INTRODUCTION

Tamboribactam, (formerly NXR-5133), is a novel cyclic boronic-based broad-spectrum β-lactamase inhibitor with potent and selective direct inhibitory activity against serine- and metallo-β-lactamases (Ambler Classes A, B, C and D) [1]. Tamboribactam greatly enhances the activity of cefepime against many difficult-to-treat organisms, in combination with ceftazidime and carbenapenem-resistant Enterobacteriales and Pseudomonas aeruginosa. In this study, we evaluated the in vitro activity of the investigational combination tamboribactam-cefepime and comparator agents against recent clinical isolates of Enterobacteriales collected during 2018-2020 surveillance.

METHODS

MICs of cefepime with tamboribactam and comparator agents against Enterobacteriales were determined following CLSI M07-A11 guidelines [2] against 13,730 Enterobacteriales isolates collected globally (Figure 1, Figure 2). Quality control (QC) testing was performed each day of testing as specified by the CLSI [2]. Isolates were from community and hospital infections collected from 266 sites in 56 countries from 2018 to 2020. Isolates were sourced from (n) percent of total respiratory tract infections (4,550/33.1%), urinary tract infections (3,849/28.0%), skin/soft tissue infections (2,346/17.7%), and central line associated bloodstream infections (4,550/33.1%). OXA-48 group genes via PCR and Sanger sequencing. Seventy-four OXA-48 group genes were identified in 14% (N=207) and VIM (n=22). Note organisms could also possess AmpC-type enzymes, or OSBLs, but no carbapenemases.

RESULTS

In the current study, we evaluated the in vitro activity of the investigational combination tamboribactam-cefepime and comparator agents against Enterobacteriales, with tamboribactam-cefepime significantly restoring the in vitro activity of cefepime against Enterobacteriales, including isolates monoresistant to cefepime and cefepime-resistant, and demonstrating approved BL/BLI combinations and expressing synergy with multiple classes of β-lactams, and supporting the continued development of tamboribactam in a potential combination therapy for challenging infections due to resistant Gram-negative pathogens.

REFERENCES

ACKNOWLEDGMENTS

This project began with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201300019C, and The Institute for Healthcare Improvement (IHMA), under Agreement 1A700784 to IHMA, Inc.

Figure 1. Distribution of 13,730 Enterobacteriales isolates by species

<table>
<thead>
<tr>
<th>Species</th>
<th>%S</th>
<th>%I</th>
<th>%R</th>
<th>MIC</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter cloaceae</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
<tr>
<td>Citrobacter amalonaticus</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
<tr>
<td>Citrobacter braakii</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>84.2</td>
<td>4.7</td>
<td>5.1</td>
<td>0.06</td>
<td>≤0.12</td>
</tr>
</tbody>
</table>

Figure 2. Distribution of 13,730 Enterobacteriales isolates by region

Figure 3. MIC distribution of cefepime-taniborbactam and select comparator agents against 13,730 Enterobacteriales

Figure 4. MIC distribution of cefepime-taniborbactam against resistant Enterobacteriales

Figure 5. MIC distribution of cefepime-taniborbactam against molecularly characterized Enterobacteriales

Antimicrobial Activity of Cefepime in Combination with Taniborbactam Against Clinical Isolates of Enterobacteriales from 2018-2020 Global Surveillance

RESULTS SUMMARY

- Tamboribactam-cefepime showed potent in vitro activity against all Enterobacteriales, with MIC50/90 values of 0.06/0.25 µg/mL and ≥99% inhibited at MIC values of ≤8 µg/mL at the provisional susceptible breakpoint of ≤8 µg/mL (Table 1, Figure 3).
- Cefepime-taniborbactam activity was maintained against resistant subsets of Enterobacteriales, with MIC50 values of 0.02 µg/mL against cefepime-non-susceptible, 8 µg/mL against meropenem-susceptible and 4 µg/mL against tamboribactam-non-susceptible isolates (Table 1, Figure 4).
- Cefepime-taniborbactam maintained activity against ESBL, KPC, and VIM-IMPA harboring isolates with MIC50 values of 1.0 µg/mL, 2 µg/mL, and 0.5 µg/mL, respectively, ≥99.62% inhibition was observed in 21/24 ESBL, and colimuria, and polymyxin MIC values of 0.06/0.25 µg/mL and ≥99% inhibited at MIC values of ≤8 µg/mL at the provisional susceptible breakpoint of ≤8 µg/mL (Table 1, Figure 4).
- Cefepime-taniborbactam inhibited 76.0% of isolates expressing NDM (n=207) or VIM (n=22) MBLs. Whole genome sequence analysis suggested likely explanations for the loss of the non-IMP harboring isolates exhibiting cefepime-taniborbactam MIC values ≤16 µg/mL, including penicillin-binding protein overexpression in 12/39 (31.6%) isolates observed in 21/24 ES, coli, and permeability defects and/or efflux up-regulation in 39/39 (100%) K. pneumoniae.

REFERENCES

