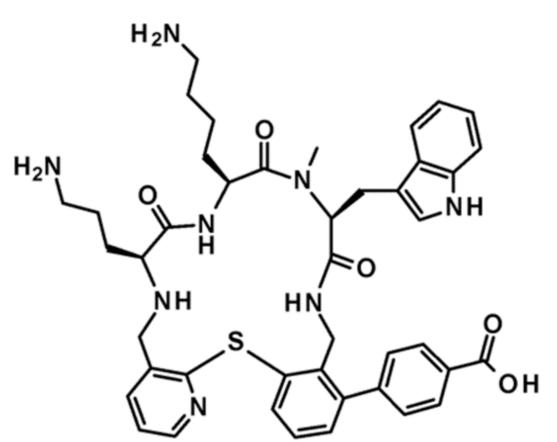
Activity of the novel antibiotic RG6006 against Acinetobacter spp. and exploration of the susceptibility testing method


Stephen Hawser¹, Nimmi Kothari¹, Thomas Valmont¹, Séverine Louvel², Claudia Zampaloni²

¹IHMA Europe, Monthey (Valais), Switzerland; ²Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland

Introduction

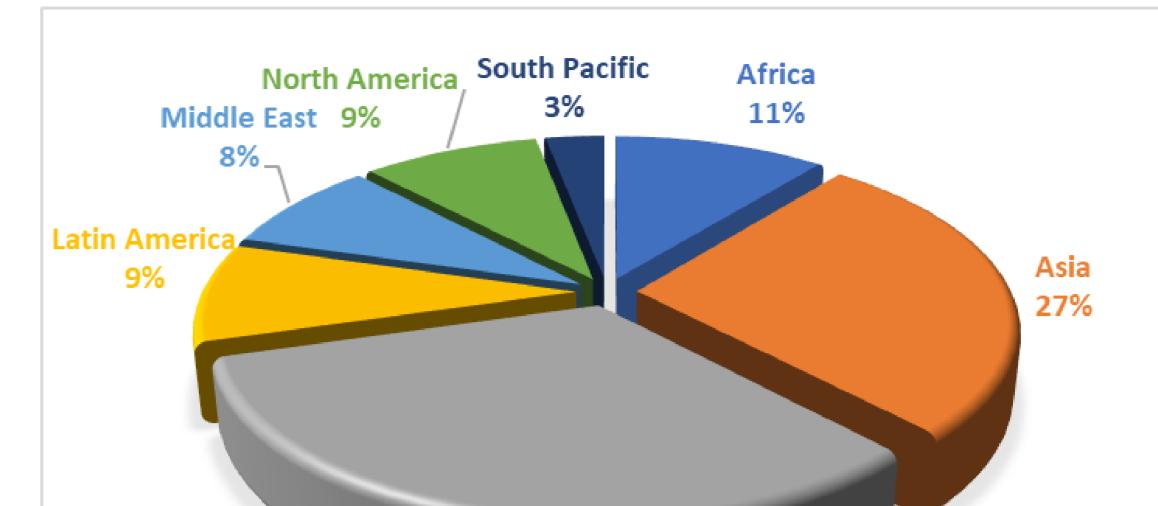

RG6006 is the first representative of a novel class of tethered macrocyclic peptide antibiotics active against Acinetobacter spp., including carbapenem-Acinetobacter baumannii-calcoaceticus resistant complex (ABC) organisms. In this study, the susceptibility testing of RG6006 was carried out against a panel of 166 Acinetobacter spp. isolates randomly selected (115 A. baumannii & 51 non-A. baumannii) representing a wide geography and susceptibility profile (62% of which were multi-drug

Figure 1. The Chemical Structure of RG6006, a Tethered Macrocyclic Peptide

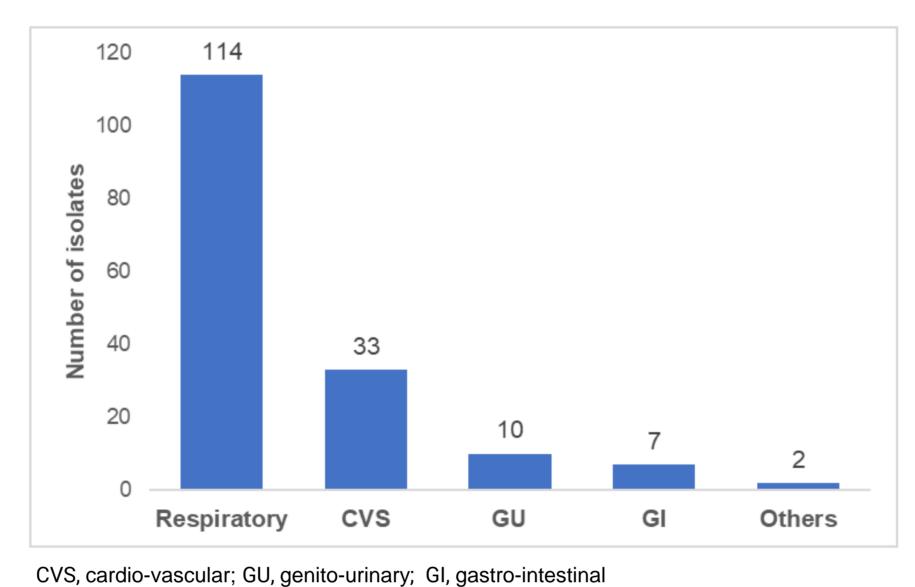
Results

Figure 2. Distribution by Geographical Location

Contact: Claudia Zampaloni, PhD Claudia.Zampaloni@roche.com F. Hoffmann-La Roche Ltd

resistant [MDR]) from 2019 collection. The assay was performed under varying conditions to optimize the minimum inhibitory concentration (MIC) reading endpoints.

Methods


MICs were performed using the Clinical Laboratory Standards Institute (CLSI) broth dilution method in cation-adjusted Mueller Hinton broth (CA-MHB) and also in the presence of 20% of human serum (HS) or 20% of horse serum (HoS). The readings were done at 100% and 80% inhibition in CA-MHB and at complete inhibition in the presence of sera (100%).

Results Summary

Summary data are shown in Table 1.

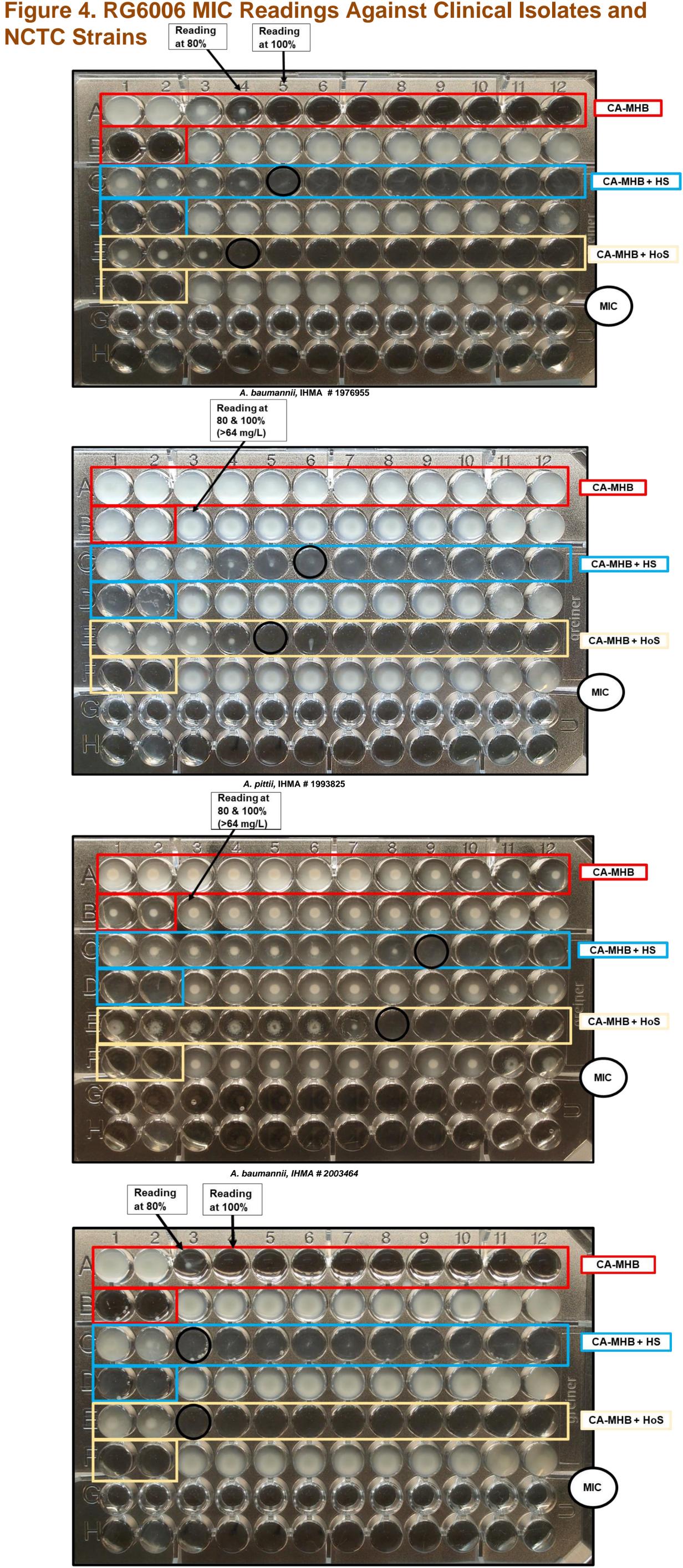

For a fraction of isolates (circa 25%), MIC RG6006 determination of was affected by ambiguous readings (not clear endpoint readings: trailing, multiple skipped wells) in CA-MHB. This effect complicated routine susceptibility testing hence the use of reading at 80% of inhibition. In addition, supplementation of serum allowed for accurate MIC determinations though no major variation in MIC distribution between the different conditions. Indeed, RG6006 was active against all Acinetobacter spp., with an MIC_{50/90} of 0.12/0.5 mg/L in CA-MHB supplemented with serum and an MIC_{50/90} of 0.12/1 mg/L in CA-MHB when read at 80% inhibition.

Figure 3. Distribution by Infection Source

Table 1. Antimicrobial Activity of RG6006 and Meropenem in Various Media Tested

Conclusions

RG6006 works as an antibacterial agent with a potent in vitro activity against Acinetobacter isolates. These data support the continued clinical development of RG6006 for infections caused by Acinetobacter baumannii-calcoaceticus complex (ABC) isolates, including difficult to treat carbapenem-resistant isolates. Varying testing conditions such as CA-MHB supplementation with serum improved MIC readings with this novel agent. Further optimization of the MIC method with RG6006 is ongoing.

_			
		aomonte	
Δ.			

Against *Acinetobacter* spp. Isolates

Drug	MIC (mg/L)				
All Isolates (n = 166)	MIC ₅₀	MIC ₉₀	MIN	ΜΑΧ	
RG6006 (CA-MHB, read 100%)	>64	>64	0.03	>64	
RG6006 (CA-MHB, read 80%)	0.12	1	0.016	>64	
RG6006 (CA-MHB+20%HS*)	0.12	0.5	≤0.008	8	
RG6006 (CA-MHB+20%HoS*)	0.12	0.5	≤0.008	4	
Meropenem	32	>32	0.06	>32	
<i>A. baumannii</i> (n = 115)	MIC ₅₀	MIC ₉₀	MIN	MAX	
RG6006 (CA-MHB, read 100%)	>64	>64	0.03	>64	
RG6006 (CA-MHB, read 80%)	0.12	0.25	0.016	>64	

RG6006 (CA-MHB+20%HS)	0.12	0.25	≤0.008	8
RG6006 (CA-MHB+20%HoS)	0.12	0.25	0.016	1
Meropenem	>32	>32	0.06	>32
Other <i>Acinetobacter</i> spp. (n = 51)	MIC ₅₀	MIC ₉₀	MIN	MAX
RG6006 (CA-MHB, read 100%)	>64	>64	0.03	>64
RG6006 (CA-MHB, read 80%)	0.12	>64	0.03	>64
RG6006 (CA-MHB+20%HS)	0.12	1	0.016	4
RG6006 (CA-MHB+20%HoS)	0.06	1	≤0.008	4
Meropenem	0.25	32	0.06	>32
MDR- <i>Acinetobacter</i> spp. (n = 103)	MIC ₅₀	MIC ₉₀	MIN	МАХ
RG6006 (CA-MHB, read 100%)	>64	>64	0.06	>64
RG6006 (CA-MHB, read 80%)	0.12	0.5	0.03	>64
RG6006 (CA-MHB+20%HS)	0.12	0.25	≤0.008	8
RG6006 (CA-MHB+20%HoS)	0.12	0.5	0.03	2

Acknowledgements

This project has been funded in whole or in part with Federal funds from the Department of Health and Human Services; Administration for Strategic Preparedness and Response; Biomedical Advanced Research and Development Authority, OT under number: HHS0100201600038C.

References

1. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards – Eleventh Edition. CLSI document M07-Ed11. 2018. CLSI, Wayne, PA. 2. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing – 32nd ed. CLSI Supplement M100. 2022. CLSI, Wayne, PA.

*HS: human serum; HoS: horse serum

A. baumannii NCTC 13304