Introduction

Acinetobacter baumannii is a frequently encountered Gram-negative non-fermentative organism that has become a formidable nosocomial pathogen with limited therapeutic options available. This organism is able to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory. Only one isolate per patient was accepted. A. baumannii has evolved into an extremely problematic hospital pathogen responsible for a multitude of infections including wound, lower respiratory tract, intra-abdominal, urinary tract and respiratory. Resistance patterns for this species can vary geographically. In this study analysis of global data from the Tigecycline Evaluation Surveillance Trial (TEST) was done to evaluate the activity of seven agents against A. baumannii (AB). The activity of seven agents against A. baumannii collected Globally

Results

The activity of seven agents against ACB are shown in the table. This study was sponsored by Pfizer Inc. IHMA, Inc. (IHMA, Inc.) was paid by Pfizer to manage this study and to prepare this poster. Conclusions: Tigecycline was the only drug, based on MIC90 data, that maintained a potent level of activity of clinically relevant antibiotics against A. baumannii overall, and this level of activity did not appear to be affected by the MDR phenotype. Although tigecycline resistance (MDR) and has a unique ability to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory. This study was sponsored by Pfizer Inc. IHMA, Inc. (IHMA, Inc.) was paid by Pfizer to manage this study and to prepare this poster. Conclusions: Tigecycline was the only drug, based on MIC90 data, that maintained a potent level of activity against ACB overall, and this level of activity did not appear to be affected by the MDR phenotype. Although tigecycline resistance (MDR) and has a unique ability to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory.

Conclusions: Tigecycline was the only drug, based on MIC90 data, that maintained a potent level of activity against ACB overall, and this level of activity did not appear to be affected by the MDR phenotype. Although tigecycline resistance (MDR) and has a unique ability to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory. This study was sponsored by Pfizer Inc. IHMA, Inc. (IHMA, Inc.) was paid by Pfizer to manage this study and to prepare this poster. Conclusions: Tigecycline was the only drug, based on MIC90 data, that maintained a potent level of activity against ACB overall, and this level of activity did not appear to be affected by the MDR phenotype. Although tigecycline resistance (MDR) and has a unique ability to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory. This study was sponsored by Pfizer Inc. IHMA, Inc. (IHMA, Inc.) was paid by Pfizer to manage this study and to prepare this poster. Conclusions: Tigecycline was the only drug, based on MIC90 data, that maintained a potent level of activity against ACB overall, and this level of activity did not appear to be affected by the MDR phenotype. Although tigecycline resistance (MDR) and has a unique ability to survive in multiple environments including hospital waters, intra-abdominal, urinary tract and respiratory.

Materials and Methods

For the report, A. baumannii isolates were isolated from a variety of clinical infections including blood, intra-abdominal, urinary tract and respiratory. Only one isolate per patient was accepted. For this study isolates from 5 global regions (Asia-Pacific, Africa-Middle East, Europe, North America, and Latin America) were collected locally from 2012-2016 and identified using local site procedures. Minimum inhibitory concentrations (MICs) were determined by the Clinical and Laboratory Standards Institute (CLSI) recommended broth microdilution testing method using MicroScan (Becton Dickinson, West Sacramento, CA) panels [1]. For the MicroScan broth microdilution tests, MIC interpretations were determined according to CLSI [2] and FDA-guideline breakpoints [3]. Isolates were sent to a central lab (IHMA Inc., Schererville, IN, USA) for confirmation of isolate identification by MALDI-TOF mass spectrometry. Multi-drug resistance (MDR) was defined as resistance to three or more of the tested antibiotic classes (penicillin, amikacin, ciprofloxacin, imipenem, meropenem, cefepime, and tigecycline).

References


Acknowledgments

We gratefully acknowledge the contribution of the investigators, laboratory personnel, and all members of the Tigecycline Evaluations in Acinetobacter baumannii (TEA) research organization that has been contracted by Pfizer to manage the TEST program.

Disclosures

The authors declare that they do not have any conflict of interest. IHMA Inc., which was paid by Pfizer to manage the study and to prepare this poster, is an employee of Pfizer.