P1283

Activity of Imipenem-Relebactam against Enterobacteriaceae and Pseudomonas aeruginosa from Respiratory Tract Infections in Europe - SMART 2015

IHMA. Inc. 2122 Palmer Drive Schaumburg, IL 60173 USA Phone: +1.847.303.5003 Fax: +1.847.303.5601 www.ihmainc.com

S. Lob¹, K. Young², M. Motyl², S. Hawser³, I. Morrissey³, S. Magnet³, D. Sahm¹

¹IHMA, Inc., Schaumburg, IL, USA, ²MRL Merck & Co., Inc., Kenilworth, NJ, USA, ³IHMA Europe Sàrl, Monthey (VS), Switzerland

Revised Abstract

Background: Relebactam (MK-7655) (REL) is a β-lactamase inhibitor of class A and class C βlactamases that is in development in combination with imipenem. REL restores the in vitro activity of imipenem (IMI) against Enterobacteriaceae, including those producing KPCs, and Pseudomonas aeruginosa. In this study we evaluated the ability of REL to restore IMI susceptibility to a collection of gram-negative isolates from lower respiratory tract infections in European countries participating in the 2015 SMART surveillance program.

Material/Methods: 45 hospitals in 17 countries each collected up to 100 consecutive aerobic and facultative gram-negative pathogens from lower respiratory tract infections. MICs were determined for 1065 P. aeruginosa and 1949 non-Proteeae Enterobacteriaceae (NPE) using CLSI broth microdilution. Proteeae were excluded due to intrinsic non-susceptibility to IMI. REL was tested at a fixed concentration of 4 mg/L in combination with IMI. The percent susceptible was assessed using EUCAST breakpoints. IMI susceptible breakpoints of ≤2 mg/L (NPE) and ≤4 mg/L (P. aeruginosa) were applied to IMI/REL. All IMI non-susceptible isolates were tested for the presence of genes encoding β-lactamases using published multiplex PCR assays, followed by full-gene DNA

Results: The cumulative percent of isolates at each IMI and IMI/REL MIC is shown in the table

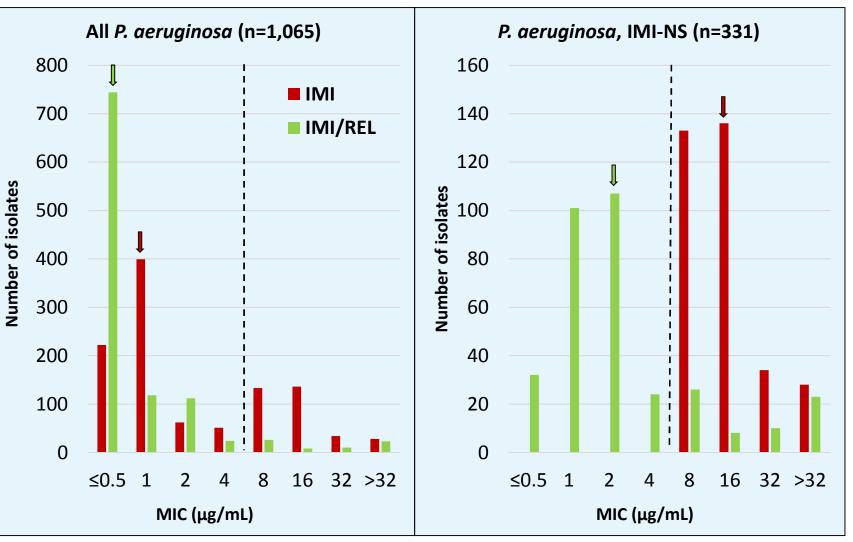
Organism	n	Drug				MIC (r	ng/L)			
			≤0.5	1	2	4	8	16	32	>32
P. aeruginosa	1065	IMI	20.8	58.3	64.1	68.9	81.4	94.2	97.4	100
		IMI/REL	69.9	80.9	91.5	93.7	96.2	96.9	97.8	100
P. aeruginosa, IMI-NS	331	IMI					40.2	81.3	91.5	100
		IMI/REL	9.7	40.2	72.5	79.8	87.6	90.0	93.1	100
NPE	1949	IMI	76.3	89.3	94.0	95.7	96.5	97.3	97.7	100
		IMI/REL	87.6	95.7	97.5	98.4	98.7	98.9	99.0	100
NPE, IMI-NS	116	IMI				27.6	41.4	55.2	61.2	100
		IMI/REL	38.8	45.7	58.6	73.3	78.4	81.9	83.6	100

Shaded area indicates susceptible by EUCAST 2015 imipenem breakpoint; MIC₉₀ bolded; NPE, non-Proteeae Enterobacteriaceae; IMI, imipenem; REL, relebactam; NS, non-susceptible

Among 1065 P. aeruginosa, 68.9% (734) were susceptible to IMI; of the 331 non-susceptible isolates, 79.8% (264) were rendered susceptible by the addition of REL, for a final 93.7% susceptible. The majority of the remaining IMI/REL non-susceptible P. aeruginosa isolates carried metallo-βlactamases (MBLs) or GES carbapenemases (with 13 of the 15 GES-carbapenemase-positive isolates found in one hospital). Among 1949 NPE, 94.0% (1833) were susceptible to IMI; of the 116 non-susceptible isolates, 58.6% (68) were rendered susceptible by the addition of REL, for a final 97.5% S. The majority of the NPE isolates that were rendered susceptible by REL carried KPCs, and the majority of the isolates that remained IMI/REL non-susceptible carried MBLs. Isolates carrying OXA-48 carbapenemases were found in both subsets.

Conclusions: Relebactam exhibited strong potential for restoring the *in vitro* activity of IMI against many pathogens otherwise non-susceptible to carbapenems. Further development of this compound could provide a valuable therapeutic option for treating lower respiratory tract infections caused by resistant gram-negative bacilli.

Introduction

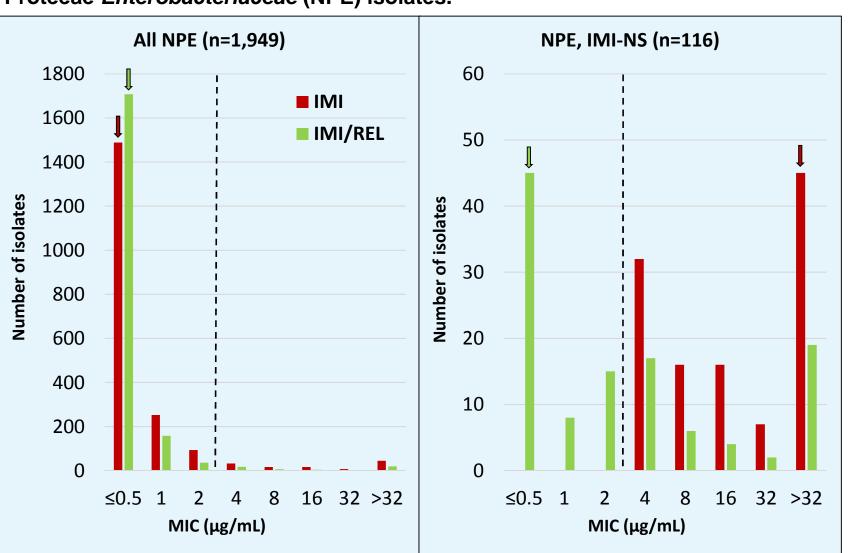

Relebactam (MK-7655) (REL) is a β-lactamase inhibitor of class A and class C β-lactamases that is in development in combination with imipenem. REL restores the in vitro activity of imipenem (IMI) against Enterobacteriaceae, including those producing KPCs, and Pseudomonas aeruginosa. In this study we evaluated the ability of REL to restore IMI susceptibility to a collection of gram-negative isolates from lower respiratory tract infections in European countries participating in the 2015 SMART surveillance program.

Materials & Methods

45 hospitals in 17 countries each collected up to 100 consecutive aerobic and facultative gram-negative pathogens from lower respiratory tract infections. MICs were determined for 1065 P. aeruginosa and 1949 non-Proteeae Enterobacteriaceae (NPE) using CLSI broth microdilution [1,2]. Proteeae were excluded due to intrinsic non-susceptibility to IMI. REL was tested at a fixed concentration of 4 mg/L in combination with IMI. The percent susceptible was assessed using EUCAST breakpoints [3]. IMI susceptible breakpoints of ≤2 mg/L (NPE) and ≤4 mg/L (*P. aeruginosa*) were applied to IMI/REL. All IMI non-susceptible isolates were tested for the presence of genes encoding β-lactamases using published multiplex PCR assays, followed by full-gene DNA sequencing.

Results

Figure 1. Effect of relebactam on MIC distribution of imipenem against P. aeruginosa isolates



Arrows indicate the mode of the respective MIC distributions.

Dashed line represents the EUCAST susceptibility breakpoint of ≤4 µg/mL for imipenem.

IMI, imipenem; REL, relebactam.

Figure 2. Effect of relebactam on MIC distribution of imipenem against non-Proteeae Enterobacteriaceae (NPE) isolates.

Arrows indicate the mode of the respective MIC distributions.

Dashed line represents the EUCAST susceptibility breakpoint of ≤2 µg/mL for imipenem.

All NPE: K. pneumoniae (n=591), E. coli (n=552), E. cloacae (n=205), S. marcescens (n=200), K. oxytoca (n=137), E. aerogenes (n=85), C. koseri (n=50), C. freundii (n=41), and 17 other species (n=88)

IMI-NS NPE: K. pneumoniae (n=97), S. marcescens (n=6), E. cloacae (n=5), S. liquefaciens (n=4), and 4 other species (n=4).

Table 1. Susceptibility of P. aeruginosa to imipenemrelebactam and comparators.

Organisms (n)/Drugs	% S	% I	% R	MIC ₅₀	MIC ₉₀
All P. aeruginosa (n=1065))				
Imipenem	68.9	12.5	18.6	1	16
Imipenem-Relebactama	93.7	2.4	3.8	0.25	2
Amikacin	87.1	3.9	8.9	≤4	16
Aztreonam	8.6	69.6	21.8	8	>16
Cefepime	73.1	0.0	27.0	4	32
Ceftazidime	71.4	0.0	28.6	4	>32
Colistin	99.5	0.0	0.5	≤1	≤1
Levofloxacin	54.3	0.0	45.7	1	>4
Piperacillin-Tazobactam	66.6	0.0	33.4	8	>64
P. aeruginosa, IMI-NS (n=3	331)				
Imipenem	0.0	40.2	59.8	16	32
Imipenem-Relebactama	79.8	7.9	12.4	2	16
Amikacin	66.2	10.3	23.6	≤4	>32
Aztreonam	2.7	50.8	46.5	16	>16
Cefepime	39.3	0.0	60.7	16	>32
Ceftazidime	41.1	0.0	58.9	16	>32
Colistin	99.7	0.0	0.3	≤1	≤1
Levofloxacin	22.4	0.0	77.6	>4	>4
Piperacillin-Tazobactam	33.5	0.0	66.5	64	>64

^a In the absence of breakpoints for imipenem-relebactam, EUCAST breakpoints

for imipenem were applied. S, susceptible; I, intermediate; R, resistant; IMI-NS, imipenem non-susceptible

imipenem-non-susceptible *P. aeruginosa* isolates^a

Table 2. Acquired β-lactamases detected in 331

Phenotype β-lactamase content	No. of isolates (% of phenotype)
Imipenem-relebactam-susceptible ^b (n=26	64)
ESBL	18 (6.8)
AmpC	4 (1.5)
No acquired β-lactamase detected	242 (91.7)
Imipenem-relebactam-non-susceptible ^b ((n=67)
NDM	2 (3.0)
VIM	31 (46.3)
IMP	3 (4.5)
GES carbapenemase ^c	15 (22.4)
ESBL	1 (1.5)
AmpC	1 (1.5)
No acquired β-lactamase detected	14 (20.9)

a Original spectrum β-lactamases (e.g., TEM-1) and intrinsic chromosomallyencoded AmpC β-lactamases common to *P. aeruginosa* are not shown. ^b In the absence of breakpoints for imipenem-relebactam, EUCAST breakpoints for

c 13 of the 15 isolates were collected in one hospital in Portugal (all GES-6).

Table 3. Susceptibility of NPE relebactam and comparators

Organisms (n)/Drugs	%S %I %F		% R	MIC ₅₀	MIC ₉₀	
All NPE (n=1949)						
Imipenem	94.0	2.5	3.5	≤0.5	2	
Imipenem-Relebactama	97.5	1.2	1.3	0.12	1	
Amikacin	93.5	2.2	4.3	≤4	8	
Aztreonam	69.9	4.0	26.1	≤1	>16	
Cefepime	75.9	5.0	19.1	≤1	>32	
Ceftazidime	70.7	5.4	23.9	≤0.5	>32	
Ceftriaxone	69.1	1.9	29.0	≤1	>32	
Colistin	84.3	0.0	15.8	≤1	>8	
Levofloxacin	72.2	4.4	23.5	≤0.5	>4	
Piperacillin-Tazobactam	72.4	6.5	21.1	4	>64	
NPE, IMI-NS (n=116)						
Imipenem	0.0	41.4	58.6	16	>32	
Imipenem-Relebactama	58.6	19.8	21.6	2	>32	
Amikacin	42.2	11.2	46.6	16	>32	
Aztreonam	9.5	0.0	90.5	>16	>16	
Cefepime	9.5	0.9	89.7	>32	>32	
Ceftazidime	9.5	0.9	89.7	>32	>32	
Ceftriaxone	7.8	0.0	92.2	>32	>32	
Colistin	56.0	0.0	44.0	≤1	>8	
Levofloxacin	10.3	4.3	85.3	>4	>4	
Piperacillin-Tazobactam	7.8	0.9	91.4	>64	>64	

^a In the absence of breakpoints for imipenem-relebactam, EUCAST breakpoints for imipenem were applied.

Table 4. Acquired β-lactamases detected in 116 imipenem-non-susceptible NPE isolates^a

Phenotype β-lactamase content	No. of isolates (% of phenotype)
Imipenem-relebactam-susceptible (n=68	3)
KPC ± ESBL ± AmpCb	49 (72.1)
OXA-48 ± ESBL ^c	11 (16.2)
KPC + OXA-48 + ESBL ^d	1 (1.5)
ESBL ^e	1 (1.5)
No acquired β-lactamase detected ^f	6 (8.8)
lmipenem-relebactam-non-susceptible (n=48)
OXA-48 + ESBL ± AmpC ^g	18 (37.5)
NDM + ESBL ^h	20 (41.7)
NDM + OXA-48 + ESBL ⁱ	4 (8.3)
VIM + ESBLi	1 (2.1)
VIM + OXA-48 ^k	1 (2.1)
No acquired β-lactamase detected ^l	4 (8.3)

AmpC β-lactamases common to *Enterobacter* and *Serratia* spp. are not shown.

^k E. cloacae. [⊥] S. liquefaciens (n=3) and S. marcescens (n=1).

Results Summary

- Among 1,065 P. aeruginosa, the modal IMI MIC dropped from 1 to ≤0.5 µg/ml in the presence of REL (Figure 1). MIC₉₀ dropped from 16 to 2, and % S increased from 68.9 to 93.7% (Table 1). Of the studied comparators, none exceeded 90% S, except colistin (99.5%)
- Among 331 IMI-NS *P. aeruginosa* isolates, the modal IMI MIC dropped from 16 to 2 µg/ml in the presence of REL (Figure 1), and 79.8% of isolates were rendered susceptible to IMI (Table 1).
- The majority of IMI/REL-NS P. aeruginosa isolates carried metallo-β-lactamases (MBL).
- Because of the relatively small proportion of IMI-NS isolates among NPE (6.0%), the IMI MIC distribution for all NPE was similar with and without REL (Figure 2).
- However, among the 116 IMI-NS NPE isolates, the modal IMI MIC dropped from >32 to ≤0.5 µg/ml in the presence of REL (Figure 2), and 58.6% of isolates were rendered susceptible.
- Of the 68 NPE isolates that were rendered IMI-S in the presence of REL, >70% carried KPC; the 11 OXA-48positive isolates showed an IMI MIC decrease of only one dilution.
- Of the IMI/REL-NS NPE isolates, 92% carried MBL and/or OXA-48 carbapenemases.

Conclusions

Relebactam exhibited strong potential for restoring the in vitro activity of IMI against many pathogens otherwise nonsusceptible to carbapenems. Further development of this compound could provide a valuable therapeutic option for treating lower respiratory tract infections caused by resistant gram-negative bacilli.

References and Acknowledgments:

- 1. Clinical and Laboratory Standards Institute. 2015. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards – Tenth Edition. CLSI document M07-A10 (ISBN 1-56238-987-4). CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA.
- 2. Clinical and Laboratory Standards Institute (CLSI), 2017. Performance Standards for Antimicrobial Susceptibility Testing - Twenty-Seventh Informational Supplement. CLSI Document M100S (ISBN 1-56238-923-8). CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA.
- 3. The European Committee on Antimicrobial Susceptibility Testing EUCAST Clinical Breakpoints 2017; http://www.eucast.org/clinical_breakpoints/

Funding for this research was provided by Merck & Co., Inc., Kenilworth, NJ USA. The authors thank all the participants in the SMART program for their continuing contributions to its success.

Copyright © 2017 Merck Sharp & Dohme Corp., a subsidiary of **Merck & Co., Inc.** All rights reserved

S, susceptible; I, intermediate; R, resistant; IMI-NS, imipenem non-susceptible; NA, no breakpoint available.

^b K. pneumoniae (n=46), E. coli (n=1), E. cloacae (n=1), and K. oxytoca (n=1), ^c K. pneumoniae (n=9) and E. cloacae (n=2); IMI MIC decreased by only 1 dilution from 4 to 2 µg/ml with addition of REL.

^d K. pneumoniae.

e S. marcescens.

^f S. marcescens (n=4), S. liquefaciens (n=1), S. ureilytica (n=1).

⁹ K. pneumoniae (n=17) and R. ornithinolytica (n=1).

h K. pneumoniae (n=19) and E. cloacae (n=1).

i K. pneumoniae (n=4). ^j K. pneumoniae.