RESULTS

Oritavancin demonstrated potent in vitro activity against recent hospital-acquired E. faecalis and E. faecium, with MIC values not calculated for n < 10. A7 and M100 clinical isolates were collected and analyzed. **ORI** MIC range was lower than all study drugs except teicoplanin. **ORI** MIC values were ≤0.03 mcg/ml against 90% of E. faecalis and 98% of E. faecium, respectively, and more than 64-fold lower than teicoplanin, vancomycin, and daptomycin. **ORI** was equipotent against various drug-resistant isolates with MICs of ≤0.015 mcg/ml against high-level aminoglycoside-amp/BLD-, levofloxacin-resistant strains, and -resistant group had **ORI** MICs of <0.03 mcg/ml. The highest observed MIC was observed against any isolate was 0.5 mcg/ml. **ORI** is more active against vancomycin-resistant enterococci compared to vancomycin.

Conclusion: **ORI** demonstrated potent in vitro activity against recent hospital-acquired E. faecalis and E. faecium from a diverse population of centers in Korea and the United States. **ORI** may be an effective treatment option for vancomycin-resistant enterococci (VRE). This study was sponsored by a grant from Targanta Therapeutics. We gratefully acknowledge the contributions of the participating laboratory.

ORI was equipotent against various drug-resistant isolates with MICs of ≤0.015 mcg/ml against high-level aminoglycoside-amp/BLD-, levofloxacin-resistant strains, and -resistant group had **ORI** MICs of <0.03 mcg/ml. The highest observed MIC was observed against any isolate was 0.5 mcg/ml. **ORI** is more active against vancomycin-resistant enterococci compared to vancomycin. The treatment of hospital acquired vancomycin-resistant enterococci can be problematic. The extra cellular peptidoglycan cell wall structure and a pore-promoting agent in phagocytes' armamentarium against drug-resistant E. faecalis and E. faecium.

REFERENCES