Susceptibility of Meropenem Non-Susceptible Enterobacteriaceae from Asia to Tigecycline and Comparators: TEST 2009-2010

S. Hawser1, D. Hoban2, B. Johnson2, S. Bouchillon2, M. Dowzicky3

1IHMA Europe Sàrl, Epalinges, Switzerland
2International Health Management Associates, Inc., Schaumberg, IL, USA
3Pfizer Inc., Collegeville, PA, USA

Revised Abstract

Background: The Tigecycline Evaluation and Surveillance Trial (TEST) monitors the activity of tigecycline and comparators against multiple pathogens collected worldwide. Such monitoring assists in investigating resistance rates either globally, regionally or by country. The current report describes susceptibility of Enterobacteriaceae from Asia, including meropenem non-susceptible isolates, to tigecycline and comparators. Methods: A total of 1,305 clinical isolates were collected from multiple infection sources in Asia during 2009-2010 of which 27 (2%) were non-susceptible to meropenem. Susceptibility testing was performed as per CLSI guidelines and interpreted using CLSI/IDSA clinical breakpoints.

Results: Susceptibility of all and meropenem non-susceptible isolates were as follows.

Conclusions: Of the agents tested, only meropenem, amikacin and tigecycline had susceptibility >90% for the total pool of 1,305 isolates. However, against the sub-population of 27 meropenem non-susceptible isolates tigecycline was the only agent that had susceptibility >75%. While meropenem resistance is generally considered to be gradually increasing in Enterobacteriaceae, the promising activity of tigecycline against meropenem non-susceptible isolates is encouraging.

Introduction

There is tremendous variability of antimicrobial resistance not only in pathogens causing various clinical infections, in different geographic regions, but also over time. These situations make continuous surveillance of the extent and trends of antimicrobial resistance crucial to provide guidance in choosing optimal therapy. While most Enterobacteriaceae remain susceptible to the carbapenem class of antibiotics, non-susceptibility to these agents appears to be emerging [1, 2]. The present study describes the frequency of meropenem non-susceptible Enterobacteriaceae isolates, collected throughout Asia during 2009-2010 as part of the Tigecycline Evaluation and Surveillance Trial (TEST).

Materials & Methods

- Clinical isolates: Isolates collected from multiple infection sources were identified to the species level and tested at each participating laboratory. All organisms were deemed clinically significant by local participant criteria. Isolate inclusion was independent of medical history, antimicrobial use, age or gender. All sites identified each study isolate utilizing local laboratory criteria. All isolates were from the period 2009-2010 and originated from various countries in Asia.

- Susceptibility testing: Minimum inhibitory concentrations (MICs) were determined using plates manufactured by Trek Diagnostics, following manufacturer and Clinical and Laboratory Standards Institute (CLSI) instructions for broth microdilution testing [3]. Susceptibility was determined using clinical breakpoints published by the CLSI [4]. FDA breakpoints were used for tigecycline [5]. Tigecycline was supplied by Pfizer, Inc. (Collegeville, PA, USA). All other agents were supplied by the panel manufacturer TREK (TREK Diagnostic Systems, Cleveland, OH). The following antimicrobial agents were included on the panels with their dilution ranges (expressed in mcg/ml): amikacin (0.5-64); amoxicillin/clavulanic acid (0.12/0.06-32/16); ampicillin (0.06-16); cefepime (0.5-32); ceftazidime (8-32); ceftriaxone (0.06-64); meropenem (0.12-16); levofloxacin (0.008-8); minocycline (0.5-16); tigecycline (0.008-16); and pipercillin/tazobactam (0.06/4-128/4).

- Reference strains: ATCC 25922 and ATCC GN061 were used in all laboratories as quality control organisms.

- Clinical breakpoints: The susceptibility of Meropenem non-susceptible isolates was determined using the Clinical and Laboratory Standards Institute (CLSI) instructions for broth microdilution testing [6]. The following antimicrobial agents were included on the panels with their dilution ranges (expressed in mcg/ml): amikacin (0.5-64); amoxicillin/clavulanic acid (0.12/0.06-32/16); ampicillin (0.06-16); cefepime (0.5-32); ceftazidime (8-32); ceftriaxone (0.06-64); meropenem (0.12-16); levofloxacin (0.008-8); minocycline (0.5-16); tigecycline (0.008-16); and pipercillin/tazobactam (0.06/4-128/4). E. coli ATCC 25922 and ATCC 35218 and P. aeruginosa ATCC 27853 were used as quality control organisms.

Conclusions

- The total of all 1,305 isolates, 27 (2%) exhibited non-susceptibility to meropenem. Meropenem non-susceptible isolates were most common in India (23%) and South Korea (3.8%).

- Of the agents tested, only meropenem, amikacin and tigecycline had susceptibility >90% for the total pool of 1,305 isolates. However, against the sub-population of 27 meropenem non-susceptible isolates tigecycline was the only agent that had susceptibility >75%.

- While meropenem resistance is generally considered to be gradually increasing in Enterobacteriaceae, the promising activity of tigecycline against meropenem non-susceptible isolates is encouraging.

References


5. Tygacil®. 2010. FDA approval letter. Pfizer Inc., Collegeville, PA, USA.

Acknowledgements

We gratefully acknowledge the contributions of the investigators, laboratory personnel, and all members of the Tigecycline Evaluation Surveillance Trial program group. This study was sponsored by Pfizer Inc.