

# THE EFFECTS OF CO<sub>2</sub> ON THE IN VITRO ACTIVITY OF TELITHROMYCIN WHEN USING ETEST® COMPARED WITH BROTH MICRIDLUTION IN 7 REFERENCE LABORATORIES

Sam K. Bouchillon,<sup>1</sup> Daryl J. Hoban,<sup>1</sup> Jack L. Johnson,<sup>1</sup> Tim M. Stevens<sup>1</sup>

<sup>1</sup>Laboratories International for Microbiology Studies, Schaumburg, Illinois

Sam Bouchillon  
Laboratories International for  
Microbiology Studies  
2122 Palmer Drive  
Schaumburg, IL 60173-3817  
Tel: 847 303 5003  
Fax: 847 745 0495  
Email: sbouchillon@ihmainc.com

## REVISED ABSTRACT

**Background:** Telithromycin has been tested extensively in vitro, and the National Committee for Clinical Laboratory Standards (NCCLS) quality control ranges and breakpoints have been established for the minimum inhibitory concentration (MIC) values and disc diffusion. However, MICs were not determined or evaluated in the presence of CO<sub>2</sub>. This study was undertaken to determine if MIC values for telithromycin obtained under CO<sub>2</sub> incubation were comparable to those recorded for broth microdilution panels incubated under ambient conditions.

**Methods:** Telithromycin MICs from 400 clinical isolates of *Streptococcus pneumoniae* (n=200), *Haemophilus influenzae* (n=100), and *Streptococcus pyogenes* (n=100) were tested in clinical laboratories using Etest® (AB Biodisk, Solna, Sweden) in CO<sub>2</sub> and were compared with broth microdilution MICs according to NCCLS guidelines.

**Results:** Telithromycin Etest MICs in CO<sub>2</sub> were consistently 1 log<sub>2</sub> dilution higher than MICs of broth microdilution for *H influenzae* and 2 log<sub>2</sub> dilutions higher for *S pneumoniae* and *S pyogenes*.

**Conclusions:** Due to the impact of CO<sub>2</sub> on telithromycin, Etest is not recommended for the routine in vitro testing of this ketolide. Should Etest be used, the appropriate log<sub>2</sub> correction factor should be employed before reporting Etest MICs or interpretive susceptibilities.

## INTRODUCTION

• Telithromycin, the first in a new class of antibiotics called ketolides, has a spectrum of activity against many gram-positive and gram-negative organisms typical of upper and lower respiratory tract infections, including resistant strains.

• Telithromycin has been tested extensively in vitro. Quality control (QC) values and breakpoints have been established for minimum inhibitory concentration (MICs) and disc diffusion zone size according to standardized microbiologic procedures set forth in protocols established by the Food and Drug Administration and the National Committee for Clinical Laboratory Standards (NCCLS).<sup>1,2</sup>

– As per these protocols, MIC was determined in a broth microdilution panel incubated in ambient air.

• Etest® (AB Biodisk, Solna, Sweden) is a product that is used to determine the MIC of specific antimicrobial-bacterium combinations under defined conditions. Etest strips, impregnated with a continuous concentration gradient of the antimicrobial agent of interest, are placed in an agar plate with the bacterium isolate and the MIC value is read when the inhibition ellipse meets the antibiotic-impregnated strip.<sup>3</sup>

– Fastidious organisms, such as those involved in lower respiratory tract infections, require incubation in CO<sub>2</sub> for this method.

• Because the NCCLS QC ranges and breakpoints for telithromycin were not determined using CO<sub>2</sub> incubation, errors in reporting MICs may occur when testing telithromycin with some organisms in the presence of CO<sub>2</sub>.

• Testing pH-sensitive antimicrobial agents in a CO<sub>2</sub> environment may affect the resultant MIC values. This has been demonstrated with some macrolides<sup>4,5</sup> and quinolones,<sup>6,7</sup> as well as telithromycin.<sup>8</sup>

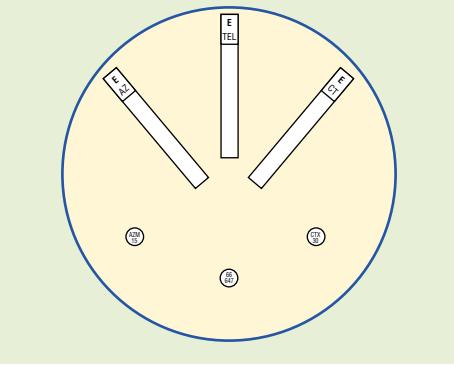
• However, there are only a few published reports of data concerning this issue in reference to telithromycin and fastidious isolates when the Etest method is used.

• Therefore, this study was undertaken to determine the quantitative difference of telithromycin MIC values obtained using Etest in a CO<sub>2</sub> environment compared with those recorded for broth microdilution panels incubated under ambient air conditions. The study was designed to follow an NCCLS M23 format to help eliminate biases that may exist between laboratories.

## METHODS

• Isolates consisted of 400 banked, clinical isolates, less than 18 months of age, supplied by Laboratories International for Microbiology Studies (Laboratories International for Microbiology Studies, Schaumburg, IL).

• The study group of organisms consisted of 100 strains of *Streptococcus pneumoniae*, 50 strains of *Haemophilus influenzae*, and 50 strains of *Streptococcus pyogenes*; each strain was tested twice by each laboratory.


– These organisms were chosen because they are the pathogens most commonly seen in respiratory tract infections.

- Aztreonam was used as a positive control.<sup>4,9</sup>
- Seven independent reference laboratories tested each of the 200 strains twice, once by broth microdilution and once using both Etest strips and disc diffusion, over a period of 10 days in a predetermined order according to a standardized protocol.
- Each laboratory used identical lot numbers of MIC panels, Etest strips, discs, and reagents.
- All laboratories followed guidelines for testing of fastidious organisms in a CO<sub>2</sub> environment.

### Antimicrobial susceptibility testing

- Susceptibility testing was performed using broth microdilution reference panels (PML Microbiologicals, Wilsonville, Ore) in ambient air and Etest strips along with disc diffusion (Becton Dickinson, Sparks, Md) in a 5% CO<sub>2</sub> atmosphere according to NCCLS guidelines and Etest recommendations.<sup>1,2,3</sup>
- A common inoculum for the panels, discs, and Etest strips was made with an overnight culture of the organism using Mueller-Hinton Broth or 0.9% physiologic saline to a turbidity equal to a 0.5 McFarland Standard. Random colony counts were used to insure inoculum uniformity.
- Broth microdilution panels to determine MIC
  - Were incubated at 35°C in ambient air for 20–24 hours.
- Etest strips to determine MIC and antibiotic discs to determine inhibition zone sizes
  - A single, 150-mm MHAB plate was used to perform susceptibility testing using Etest strips and antibiotic discs for each individual strain of *S pneumoniae* and *S pyogenes* (Figure 1).
  - All cultures were incubated at 35°C in CO<sub>2</sub> for 20–24 hours.
- Broth microdilution panels and antibiotic discs for each individual strain of *H influenzae* (Figure 1).

FIGURE 1. AGAR PLATE TEMPLATE FOR ETEST STRIPS AND ANTIBIOTIC DISCS. ONE PLATE WAS USED FOR EACH INDIVIDUAL STRAIN OF EACH ORGANISM.



## RESULTS

### Study organisms

- A total of 400 isolates were tested at each of the 7 laboratories involved in this study (Table 1).

TABLE 1. STUDY ORGANISMS BY GENUS, SPECIES, AND STRAIN PER LABORATORY

| Genus/species, strain                      | Total strains (N) | Total isolates (N) |
|--------------------------------------------|-------------------|--------------------|
| <i>Haemophilus influenzae</i>              | 50                | 100                |
| <i>Streptococcus pneumoniae</i>            | 100               | 200                |
| <i>Streptococcus pyogenes</i>              | 50                | 100                |
| Quality control organisms                  |                   |                    |
| <i>Haemophilus influenzae</i> ATCC 49247   | 10                | n/a                |
| <i>Streptococcus pneumoniae</i> ATCC 49619 | 10                | n/a                |

Abbreviations: n/a, not applicable; ATCC, American Type Culture Collection.

### Proposed MIC breakpoints

- Comparison of telithromycin MICs determined by broth microdilution and Etest support the following proposed Etest MIC breakpoints (Table 2)
  - *Streptococcus pneumoniae*: ≤4/8/16 mcg/mL
  - *Haemophilus influenzae*: ≤8/16/32 mcg/mL
  - *Streptococcus pyogenes*: ≤0.5/1/2 mcg/mL

TABLE 2. NCCLS-DEFINED\* ETEST-DEFINED, AND PROPOSED ETEST MIC BREAKPOINTS AND NCCLS-DEFINED DISC DIFFUSION ZONE BREAKPOINTS

| Drug                                     | <i>Streptococcus pneumoniae</i> |                     | <i>Haemophilus influenzae</i> |                     | <i>Streptococcus pyogenes</i> |                     |
|------------------------------------------|---------------------------------|---------------------|-------------------------------|---------------------|-------------------------------|---------------------|
|                                          | MIC (mcg/mL)<br>≤S/I≥R          | Disc (mm)<br>≤R/I≥S | MIC (mcg/mL)<br>≤S/I≥R        | Disc (mm)<br>≤R/I≥S | MIC (mcg/mL)<br>≤S/I≥R        | Disc (mm)<br>≤R/I≥S |
| <i>Haemophilus influenzae</i> (n=690)    |                                 |                     |                               |                     |                               |                     |
| TEL                                      | 4                               | 8                   | 3.226                         | 8                   | 16                            | 6.470               |
| AZI                                      | 2                               | 4                   | 1.776                         | 4                   | 8                             | 4.313               |
| <i>Streptococcus pneumoniae</i> (n=1385) |                                 |                     |                               |                     |                               |                     |
| TEL                                      | 0.015                           | 0.5                 | 0.040                         | 0.06                | 4                             | 0.164               |
| AZI                                      | 1                               | 128                 | 3.299                         | 8                   | >256 <sup>a</sup>             | 16.779              |
| <i>Streptococcus pyogenes</i> (n=694)    |                                 |                     |                               |                     |                               |                     |
| TEL                                      | 0.015                           | 0.03                | 0.023                         | 0.06                | 0.12                          | 0.082               |
| AZI                                      | 0.5                             | 1                   | 0.467                         | 2                   | 4                             | 2.805               |

Abbreviations: AZI, aztreonam; I, intermediate; MIC, minimum inhibitory concentration; n/a, not applicable; NCCLS, National Committee for Clinical Laboratory Standards; R, resistant; S, susceptible; TEL, telithromycin.

\*Breakpoints are defined in NCCLS document M100-S14, 2004, unless otherwise noted.

<sup>a</sup>Breakpoints as defined by the French Society of Microbiology. *Int J Antimicrob Agents*. 2003;21:364-391.<sup>10</sup>

<sup>b</sup>Proposed breakpoints based on data generated during this study.

<sup>c</sup>Criteria are defined for susceptibility only.

<sup>d</sup>Etest published breakpoints.<sup>11</sup>

• Susceptibility QC ranges established by NCCLS for telithromycin and azithromycin and by Etest for azithromycin are presented in Table 3.

TABLE 3. NCCLS AND ETEST SUSCEPTIBILITY QUALITY CONTROL RANGES

| Drug                                  | <i>Streptococcus pneumoniae</i> ATCC 49619 |                | <i>Haemophilus influenzae</i> ATCC 49247 |                |
|---------------------------------------|--------------------------------------------|----------------|------------------------------------------|----------------|
|                                       | MIC (mcg/mL)                               | Zone size (mm) | MIC (mcg/mL)                             | Zone size (mm) |
| NCCLS                                 | 0.004-0.03                                 | 27-33          | 1-4                                      | 17-23          |
| Aztreonam                             | 0.06-0.25                                  | 19-25          | 1-4                                      | 13-21          |
| Etest (CO <sub>2</sub> ) <sup>a</sup> | 0.5-2                                      | n/a            | 4-16                                     | n/a            |
| Aztreonam                             | 0.5-2                                      | n/a            | 4-16                                     | n/a            |

Abbreviations: ATCC, American Type Culture Collection; n/a, not applicable; NCCLS, National Committee for Clinical Laboratory Standards.

<sup>a</sup>Breakpoints established by AB Biodisk, 1998.

### Activity of telithromycin and azithromycin

- A total of 2769/2800 (99%) tests were completed at the 7 laboratories.

#### • *Haemophilus influenzae*

- Telithromycin broth microdilution in ambient air produced MIC<sub>50</sub> and MIC<sub>90</sub> values of 4 mcg/mL and 8 mcg/mL, respectively, compared with Etest values in 5% CO<sub>2</sub> of 8 mcg/mL and 16 mcg/mL, respectively (Table 4), for a difference of +1 log<sub>2</sub> dilution between the 2 testing modalities (Figure 2).
- Azithromycin: broth microdilution in ambient air produced MIC<sub>50</sub> and MIC<sub>90</sub> of 2 mcg/mL and 4 mcg/mL, respectively, compared with Etest values in 5% CO<sub>2</sub> of 4 mcg/mL and 8 mcg/mL, respectively (Table 4), for an average difference of +1.05 log<sub>2</sub> dilution between the 2 testing modalities (Figure 2).

TABLE 4. IN VITRO ACTIVITY OF TELITHROMYCIN AND AZITHROMYCIN AGAINST 200 STRAINS (400 ISOLATES) OF *HAEMOPHILUS INFLUENZAE*, *STREPTOCOCCUS PNEUMONIAE*, AND *STREPTOCOCCUS PYOGENES* COMPARING BROTH MICRIDLUTION MICS TO ETEST MICs INDEPENDENTLY TESTED IN 7 LABORATORIES

| Broth microdilution panel in ambient air | Etest in 5% CO <sub>2</sub> |                   | Log <sub>2</sub> dilution differences: Etest vs panel |
|------------------------------------------|-----------------------------|-------------------|-------------------------------------------------------|
|                                          | MIC <sub>50</sub>           | MIC <sub>90</sub> |                                                       |
| TEL                                      | 4                           | 8                 | 1.00                                                  |
| AZI                                      | 2                           | 4                 | 1.21                                                  |
| TEL (Panel)                              | 4                           | 8                 | 1.00                                                  |
| AZI (Panel)                              | 2                           | 4                 | 1.21                                                  |
| TEL (Etest)                              | 8                           | 16                | 1.26                                                  |
| AZI (Etest)                              | 16                          | 32                | 1.26                                                  |
| TEL (Panel)                              | 31                          | 64                | 1.26                                                  |